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Cosmig Questions
* . o What is the Universe made of.?
o What is.Dark I:’Iatt'er? |

® 'Did neutrinos form galaxies!?

. ® Where did the Anti-Matter go?

® VWhere did we come from!?










SoIar system moves
- at. 130 mlles/sec Ve

There are not enough stars to, -



] - ] ] u n . L] i | L ¥ L . - F ] ] 0

SR T O (N Solar system moves
ol afige s ARG _- at I3O mlles/sec ey
L R e S There Are not enough StAr's to, - -

i '.'.-.'.—'. Fi 3 # v |5
y '.. [ - n

hthI us |n5|de the galaxy' -

NGC 6503

li?%f“%ﬁﬁ;;?.i{

10 20
Radius (kpc)



AR i 'L_"l;.rﬂ._ o Solar system moves _
i g o s B A 14 130 mlles/sec
e . R ; There Aré not enough star's to.
R hthI us |n5|de the galaxy' |

NGC 6503
/! §‘§rl-l LN . Esgs it ry E i{
f _.—.——_ halo

Somethmg else we con 't see is: keepmg
us ms:de the galaxy '

Radius (kpc)



|dence for |
... -
& Solar s*stem moves 3 h {®
- -‘ ‘at. 130 miles/sec - .
| There dre not enoﬂgh stars to Ly 2 ;

e holcl us |n5|de the galaxy’




| - Dark Matter -

-~ More Bvidence for

= bere are not- enoﬁgh stars to PR : ,
oo ehold us inside the galaxy! """« | !

- A} .
-" ' ' M b . .




- More Bvidence for

’ ‘ %% < : ‘I ' b ’° .
.

¢ o , .
LA i® six times more matter, than all* - *
& atgins combined .
- { o_:\'.g
e Tbere are not. enoﬁgh stars to 2PN ' '
o eholdus inside the galaxy!'i" "« | :

o e P P -’ DS -) § | .

-
e e B 3
' k '




- Dark Matter

.

- More Bvidence for

-~
-
.
.
-
"
EA
.
] L
.
- )
.
L] =
»
N
.
.
o
o 4
. .
\ “

1® siX times more matter, than all
at@ims combined

o T DR TR e 0 5 Weakly Interacting Massive

W
ok
N
=
%)
®
3

o atl30milesisec - TpuddewiMp)
by ;,Tbé.re are not.- enoﬁgh stars to D | |

Id'us insidethe galaxy!'{ """ | .

t >, - . ¢




Dark Matter

'® six times more matter, than all . *
o [Pt : @1 |yl Jatgims combined
7 N Yl & - = Weakly Interacting Massive
B at I3 . mlles/sec " Particle (WIMP)

® |Leftovers from the Big Bang |

E

s _The_re are not. enoﬁgh stars to

e ;hbld US |nS|de the galaxy’ . . | |

' ‘ v *' . ¢ ;

-‘A - ) - * .
» E - .';

.

b
»




-
,.:'.'

[EoR - 48 six times more matter, than all* -*
F atgs combined .

5 Rt S T e W Weakly Interacting Massive

. " _' I 3 . mlles/sec ©Particle (WIMP) .

There are not. enoﬁgh stars to b2 RSSO
R BN | ' Invisible!
el ;hblci us inside the galaxy! ¢ "% | .




.
» .
-
.‘ : - . 1
.
.
-
. . .
. o
bt ‘ ’ . < A false-color computer reconstruction of the dark
, N ’ . | matter mass per area in the cluster CL0024+1654,

seen in projection. This mass, over 300 million trillion
times the mass of the Earth, is responsible for the
cosmic mirage. Individual galaxies

in the cluster appear as mass pinnacles.







.‘ ' . ‘ : .
: . : . 2 -
. ' - ; .




.

You don’t want to be there’




.

You don’t want to be there’




.

You don’t want to be there’







all atd@nsxb

matter



IVEF'SE

» .
v o ¥ Yo :
’ m -
. m — .
()
=
. %5z
53 C
= $22
= a
= N
S S5 ¥
— *n
B () o3 m .
: : F.k < =
Q0 E.r .
EE S
» P gl
- . ...,.i....o.o“ £ »
A .rT.b.hv”ﬂ_ -
....w.a..x. < y 4
» ) _... O.N -
.‘o - -.v' ’ '*J,. '




WeMlon't exist
without dark matter-

 Without Dark Matter . ' With Dark Matter
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An artist's rendition of the proposed Deep Underground Science and Engineering
Laboratory design.
Credit and Larger Version
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The National Science Foundation (NSF) today announced selection of a University of California-Berkeley proposal to produce
a technical design for a Deep Underground Science and Engineering Laboratory (DUSEL) at the former Homestake gold mine
near Lead, S.D. The Homestake team, headed by Kevin Lesko, could receive up to $5 million per year for up to three years.

A 22-member panel of external experts, all screened for conflicts of interest, exhaustively merit-reviewed proposals from
four teams and unanimously determined that the Homestake proposal offered the greatest potential for developing a DUSEL,
and NSF concurred with the panel's recommendation. The agency's selection of the Homestake proposal provides funding
only for design work. Any decision to construct and operate a DUSEL would entail a sequence of approvals by NSF and the
National Science Board; funding would then have to be requested by the Administration and approved by Congress.

"We are excited about the opportunities in underground research and education that a DUSEL would provide and look
forward to working with all of the research communities to develop a well-conceived plan for this unique, world-leading
facility at the Homestake Mine," said Tony Chan, assistant director for the NSF Directorate of Mathematical and Physical
Sciences. "In tandem with the design of the facility infrastructure, NSF also will begin working with researchers to identify
the initial suite of experiments that might be deployed in DUSEL."

Over the past decade, a dozen "blue-ribbon" independent reports from the National Academies and multiagency government
committees have emphasized the need for a DUSEL, and various candidate sites have been discussed. In September 2006,
NSF solicited proposals to produce technical designs for a DUSEL at one specific site. By the January 2007 deadline, four
teams, each focusing on a different location, had submitted proposals.

The review panel included outside experts from relevant science and engineering communities and from supporting fields
such as human and environmental safety, underground construction and operations, large project management, and
education and outreach. Scientists from Japan, Italy, the United Kingdom and Canada also served on the panel. The review
process included site visits by panelists to all four locations, and two meetings to review the information, debate and vote
on which--if any--of the proposals would be recommended for funding.

The concept of DUSEL grew out of the need for an interdisciplinary "deep science" laboratory that would allow researchers to
probe some of the most compelling questions in modern science. Among them: What are the invisible dark matter and dark
energy that comprise more than 95 percent of everything visible in the universe? What is the nature of ghostly particles
called neutrinos that pervade the cosmos, but almost never interact with matter, and what can certain kinds of extremely
rare radioactivity and particle decay reveal about the fundamental behavior of atoms? Will this site help reliably predict and
control earthquakes? What are the characteristics of microorganisms at great depth?

Those and other crucial questions can only be investigated at great depth, where thousands of feet of rock can shield ultra-
sensitive physics experiments from background activity, and where geoscientists, biologists and engineers can have direct
access to geological structures, tectonic processes and life forms that cannot be studied fully in any other way. Several
countries, including Canada, Italy and Japan, have extensive deep science programs. The United States has no existing
facilities below a depth of 1 kilometer.

If eventually built as envisioned by its supporters, a Homestake DUSEL would be the largest and deepest facility of its kind
in the world.

-NSF-
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